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“Don’t use a five-dollar 
word when a fifty-cent 

word will do.”

- Mark Twain



“Don’t use a five-dollar 
word when a fifty-cent 

word will do.”

- Mark Twain
(But scientists like using five-dollar 
words; sorry about repeating them

in this lesson!)



Dense Neural Network



Dense Neural Network

Every neuron is connected to every neuron in the 
previous layer.

This is a lot of connections.  Each connection has 
its own different “weight” to learn.  This makes 

training slow-- and risks overfitting.



Time Series Data

● Measurements from an accelerometer arrive as 
time-series data

Time (ms) Acceleration

0 0.37

10 -0.12
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50 0.50

60 -0.15

70 0.78



Graphing Time Series Data
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Graphing Time Series Data
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A bump
(something
useful?)



Time Series Data

● If we record 10 seconds of data, with 100 
measurements per second, that’s 1,000 
measurements; each is an input

● If we have a big dense layer using this data, 
that is 1,000,000 weights (1,000 neurons each 
connected to 1,000 inputs)

● Small computers like in current scooters can 
handle neural networks with 25,000 weights



5th Grade Math
6th Grade Math

Pre-Algebra
Algebra

Geometry
Algebra II

Trigonometry
Pre-Calculus

Calculus
Linear Algebra

Differential Equations
Multivariate/Vector Calculus

Real & Complex Analysis
Group Theory

...



Convolutions

● Convolutions are usually studied during a Differential 
Equations class, but we can get the “gist” now!

● Convolutions are a way of filtering data-- to smooth it 
out or exaggerate features

● We make a recipe for the transformation we want-- 
called a convolution kernel

● Then we follow the recipe for each entry in our data 
table

● Kernels can be any size, but for these examples size=3



Our Data
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Convolutions - Smooth

Time (ms) Acceleration

0 0.37
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60 -0.15

70 0.78

Take the average of each measurement, the measurement before, and the measurement after

Time (ms) Smoothed

0

10 -0.02

20 2.57

30 1.56

40 1.83

50 -0.94

60 0.38
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Convolutions - Smooth
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Our Data, Smoothed
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Convolutions - Exaggerate

Time (ms) Acceleration

0 0.37

10 -0.12

20 -0.30

30 8.15

40 -3.17

50 0.50

60 -0.15

70 0.78

Take each measurement times 3, minus the measurement before and minus the one after

Time (ms) Exaggerated

0

10 -0.43

20 -8.93

30 27.92

40 -18.16

50 4.82

60 -1.73

70

[−1 3 −1 ]



Convolutions - Exaggerate
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Convolutions - Exaggerate
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Our Data, Exaggerated

0 10 20 30 40 50 60 70
-20

-15

-10

-5

0

5

10

15

20

25

30

Time (ms)

A
cc

e
le

ra
tio

n
 (

m
/s

/s
)



  

Training an artificial neural network

1)Start with example data and 
a set of “correct answers.”

2)Adjust how strong the 
connections are to make the 
neural network produce 
closer to the output we 
want.  (“Training”)

3)Repeat.  A lot.

4)For some problems, we may 
get a result that’s as good 
as a human, or even better!

Remember this
slide?



  

Convolutional Neural Network

● A convolutional layer is a neural network layer that 
performs convolutions

● We don’t need to know the exact convolution we want: 
training will find it for us
– This means we don’t need to take Differential Equations 

first!
– Also the computer can find better convolutions than people 

usually can.
● Hopefully it simplifies the data in ways that make life 

easier for the later layers



Convolutional Neural Network
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Convolutional Neural Network
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Summary

● Time series data measures how values from a 
sensor change over time.

● Convolutional neural networks are good at 
matching patterns in time-series data.

● Convolutional layers are much more efficient 
(fast to train, fast to “run”) than dense layers, 
but are limited to spotting local patterns.
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