Machine Learning II

Techie Pizza #44267 Project Lesson 5

Michael Lyle

"Don't use a five-dollar word when a fifty-cent word will do."

- Mark Twain

"Don't use a five-dollar word when a fifty-cent word will do."

- Mark Twain

(But scientists like using five-dollar words; sorry about repeating them in this lesson!)

Dense Neural Network

Dense Neural Network

hidden layer 1 hidden layer 2 hidden layer 3

Every neuron is connected to every neuron in the previous layer.

This is a lot of connections. Each connection has its own different "weight" to learn. This makes training slow-- and risks overfitting.

Time Series Data

• Measurements from an accelerometer arrive as time-series data

Time (ms)	Acceleration
0	0.37
10	-0.12
20	-0.30
30	8.15
40	-3.17
50	0.50
60	-0.15
70	0.78

Graphing Time Series Data

Time (ms)	Acceleration
0	0.37
10	-0.12
20	-0.30
30	8.15
40	-3.17
50	0.50
60	-0.15
70	0.78

Graphing Time Series Data

Time (ms)	Acceleration
0	0.37
10	-0.12
20	-0.30
30	8.15
40	-3.17
50	0.50
60	-0.15
70	0.78

Time Series Data

- If we record 10 seconds of data, with 100 measurements per second, that's 1,000 measurements; each is an input
- If we have a big dense layer using this data, that is 1,000,000 weights (1,000 neurons each connected to 1,000 inputs)
- Small computers like in current scooters can handle neural networks with 25,000 weights

5th Grade Math 6th Grade Math Pre-Algebra Algebra Geometry Algebra II Trigonometry **Pre-Calculus** Calculus Linear Algebra **Differential Equations** Multivariate/Vector Calculus **Real & Complex Analysis Group Theory**

Convolutions

- Convolutions are usually studied during a Differential Equations class, but we can get the "gist" now!
- Convolutions are a way of <u>filtering</u> data-- to smooth it out or exaggerate features
- We make a recipe for the transformation we want-called a <u>convolution kernel</u>
- Then we follow the recipe for each entry in our data table
- Kernels can be any size, but for these examples size=3

Our Data

Convolutions - Smooth

Take the average of each measurement, the measurement before, and the measurement after

Time (ms)	Acceleration	1	1	1]	Time (ms)	Smoothed
0	0.37	$\frac{1}{3}$	3	$\overline{3}$	0	
10	-0.12		2		10	-0.02
20	-0.30				20	2.57
30	8.15				30	1.56
40	-3.17				40	1.83
50	0.50				50	-0.94
60	-0.15				60	0.38
70	0.78				70	

Convolutions - Smooth

Take the average of each measurement, the measurement before, and the measurement after

Time (ms)	Acceleration		Time (ms)	Smoothed
0	0.37	\rightarrow $\times \frac{1}{3}$	0	
10	-0.12	\rightarrow $\times \frac{1}{3}$ \rightarrow $+$ $$	10	-0.02
20	-0.30	\rightarrow $\times \frac{1}{3}$	20	2.57
30	8.15		30	1.56
40	-3.17		40	1.83
50	0.50		50	-0.94
60	-0.15		60	0.38
70	0.78	г ¬	70	
		$\begin{vmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \end{vmatrix}$		

Convolutions - Smooth

Take the average of each measurement, the measurement before, and the measurement after

Time (ms)	Acceleration		Time (ms)	Smoothed
0	0.37		0	
10	-0.12	\rightarrow $\times \frac{1}{3}$	10	-0.02
20	-0.30	\rightarrow $\times \frac{1}{3}$ \rightarrow $+$ $$	20	2.57
30	8.15	$ \times \frac{1}{3}$	30	1.56
40	-3.17		40	1.83
50	0.50		50	-0.94
60	-0.15		60	0.38
70	0.78	г	70	
		$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \end{bmatrix}$		

Our Data, Smoothed

Time (ms)

Convolutions - Exaggerate

Take each measurement times 3, minus the measurement before and minus the one after

Time (ms)	Acceleration				Time (ms)	Exaggerated
0	0.37	$\left -1\right $	3	-1]	0	
10	-0.12				10	-0.43
20	-0.30				20	-8.93
30	8.15				30	27.92
40	-3.17				40	-18.16
50	0.50				50	4.82
60	-0.15				60	-1.73
70	0.78				70	

Convolutions - Exaggerate

Take each measurement times 3, minus the measurement before and minus the one after

Time (ms)	Acceleration		Time (ms)	Exaggerated
0	0.37	→×(−1)	0	
10	-0.12		10	-0.43
20	-0.30		20	-8.93
30	8.15		30	27.92
40	-3.17		40	-18.16
50	0.50		50	4.82
60	-0.15		60	-1.73
70	0.78		70	
		$ -1 \ 3 \ -1 $		

Convolutions - Exaggerate

Take each measurement times 3, minus the measurement before and minus the one after

Time (ms)	Acceleration		Time (ms)	Exaggerated
0	0.37		0	
10	-0.12	→×(−1)	10	-0.43
20	-0.30		20	-8.93
30	8.15	→×(−1)	30	27.92
40	-3.17		40	-18.16
50	0.50		50	4.82
60	-0.15		60	-1.73
70	0.78		70	
		$[-1 \ 3 \ -1]$		

Our Data, Exaggerated

Training an artificial neural network

- 1) Start with example data and a set of "correct answers."
- 2) Adjust how strong the connections are to make the neural network produce closer to the output we want. ("Training")
- 3) Repeat. A lot.
- 4) For some problems, we may get a result that's as good as a human, or even better!

Remember this slide?

Convolutional Neural Network

- A convolutional layer is a neural network layer that performs convolutions
- We don't need to know the exact convolution we want: training will find it for us
 - This means we don't need to take Differential Equations first!
 - Also the computer can find better convolutions than people usually can.
- Hopefully it simplifies the data in ways that make life easier for the later layers

Convolutional Neural Network

Convolutional Neural Network

Summary

- Time series data measures how values from a sensor change over time.
- Convolutional neural networks are good at matching patterns in time-series data.
- Convolutional layers are much more efficient (fast to train, fast to "run") than dense layers, but are limited to spotting local patterns.