# Robot Fundamentals

Oakwood FLL #44267 Robot, Lesson 1 Michael Lyle

#### How Cars Steer



## Most Teams Don't Use This Approach



#### **Bottom View of Example Robot**



keep robot stiff

# Differential Steering (Top View)



This is how tanks and many tractors steer: by controlling the speed of the wheels.

# Differential Steering: Straight



If motors turn at the same speed, each wheel goes the same distance, and the robot goes straight (*hopefully*).

# Differential Steering: Left Turn



If the right motor turns faster than the left motor, the right wheel goes **FURTHER**, and the robot turns left.

# Differential Steering: Turn in Place



If the left wheel goes forward, and the right wheel goes backwards, the robot **turns in place** to the right.

# **Differential Steering: Rear Roller**

When the robot turns, it turns around the drive wheels.

This means the back of the robot slides to the side.

It's important to use a roller or wheels that can swivel in the back.

If you use a wheel that cannot freely slide sideways, it will resist the turn.

# **Differential Steering: Stability**

The robot's weight, **including attachments and cargo**, must be supported by the wheels. This means the center of mass must be **inside the red triangle**, or the robot may tip over.

It should be close to between the drive wheels, too, to help the robot turn more precisely.

BUT: If it is too close to the edge of the triangle, the robot may tip when speeding up or slowing down.



#### **Bumpers Are Useful**



Flat surfaces on side and back of robot are nice. You can use them to align against walls.